Physics explains protein unpredictability

Physics explains protein unpredictability

oregonteamsa

Physics explains protein unpredictability

Using computer simulations, researchers find that knowing all possible mutations isn’t enough to predict where a protein will go

Source: University of Oregon

Summary: Scientists theorized that they could manipulate a protein one mutation at a time and predict its evolution. They sought to prove it. And failed. They do think, however, that they’ve found a fundamental truth underlying unpredictability in a biological system.

University of Oregon scientists theorized that they could manipulate a protein one mutation at a time and predict its evolution. They sought to prove it. And failed.

They do think, however, that they’ve found a fundamental truth underlying unpredictability in a biological system. Basic physical limitations make uncertainty the norm, they reported in a paper published online Oct. 23 in the Proceedings of the National Academy of Sciences.

“While we got a surprising negative result, we were able to say why,” said Michael J. Harms, a professor in the UO Department of Chemistry and Biochemistry and scientist in the Institute of Molecular Biology. “That is a positive. Our simple study provides confirmation of what many people in the field have observed repeatedly — unpredictability. It appears it is universal.”

The research was a digital affair, done with computer simulations designed by UO doctoral student Zachary R. Sailer. He and Harms created a simple lattice protein, using an approach previously created in the Harms lab, with a random sequence of 12 amino acids. They then ran evolutionary simulations to optimize stability, a physical property of the protein.

The goal was to use the effects of all 228 mutations known to be associated with the starting protein to predict these simulated trajectories: which mutation would occur, when, over time. The ability to project ahead faded fast after the first two mutations. After that, the anticipated trajectories went astray amid a growing number of rerouting probabilities.

“The quality of your information actually decays over time,” Sailer said. “As mutations accumulate, the effects of the mutations that you measured start to change so that you can’t predict where you are going.”

In their paper, Sailer and Harms suggest that physics, particularly thermodynamics, is at play. Each mutation alters the protein in a small, but nonlinear way. This means that the effect of each mutation depends on all mutations that occurred before.

“I think that what we showed, fundamentally, is that even if you know a lot about a system, about a protein, you cannot predict how it evolves because of the physics of the system,” Harms said. “There are physical rules that limit evolution and its predictability.”

How proteins evolve is a fundamental question in evolutionary biology, from both a philosophical perspective, to learn more about the machinery of biological systems, and for clues that might lead to improved or better drugs.

“Practically,” Harms said, “our research may help us learn how to prevent the evolution of antibiotic resistance in bacteria.” Almost all bacterial borne infections are developing resistance to antibiotics, creating a leading public health concern around the world.

“Rather than studying the effects of all individual mutations,” Sailer added, “maybe we should study random combinations of many mutations. Such an approach might help us predict the evolution of resistance.”

Work is underway in the Harms lab to test for this possibility on real proteins. “We’re building computational tools that let us analyze antibiotic resistance datasets, and we are getting hints that a combinatorial approach does work,” Harms said. “It’s more complicated than studying individual mutations, but our work shows the individual approach is unlikely to work.”

Leave your thought here

Your email address will not be published. Required fields are marked *

Donation Helps Us

100
million goal

Get the latest University of Science, Technology and Arts news

Carborane-Cluster-Wrapped Copper Cluster with Cyclodextrin-like Cavities for Chiral Recognition | Journal of the American Chemical Society #Carborane #Cluster #Cu #Cyclodextrin #Chiral #Recognition

This week in #LCSOSynthesisProblem @DuncanBrownsey challenged us with the total synthesis of Wickerol A and B by Gui and coworkers @Jinghan_Gui in @J_A_C_S. #TotalSynthesis #Chemistry
Take a look: https://www.epfl.ch/labs/lcso/wp-content/uploads/2024/06/Wickerol-A-Gui-2020.pdf
Original paper: https://pubs.acs.org/doi/10.1021/jacs.9b11838

Topological electride of 𝑡-YCl, Yiwei Liang, Xinyan Lin, Biao Wan, Zhaopeng Guo, Xuyan Cao, Dexi Shao, Jian Sun, and Huiyang Gou #CondensedMatter #ChemicalPhysics https://go.aps.org/3VwcMZ5

G-Quadruplex mRNAs Silencing with Inducible Ribonuclease Targeting Chimera for Precision Tumor Therapy | Journal of the American Chemical Society #Quadruplex #mRNA #Silencing #Ribonuclease #Chimera #Tumor #Therapy

Polycationic Open‐Shell Cyclophanes: Synthesis of Electron‐Rich Chiral Macrocycles, and Redox‐Dependent Electronic States – Shi – Angewandte Chemie International Edition – Wiley Online Library

Perspective on the Development of Monomer Recovery Technologies from Plastics Designed to Last

A Perspective by Steffan K. Kristensen, Troels Skrydstrup et al. @AarhusUni_int

🔓 Open access in ACS Organic & Inorganic Au 👉 https://go.acs.org/9Gv

A fantastic collection of activities to provoke and deepen mathematical thinking. ‘Thinkers’ will enhance the teaching and learning of mathematics for new and experienced teachers, and for learners from 8 to 18 (and beyond). http://bit.ly/ATMthinkers.

ICYMI, from our Emerging Investigators collection 🎉

‘Gold-catalyzed benzannulations of 2-alkenylindoles with alkynes: a protecting-group-free regioselective approach to carbazoles’ by Youliang Wang at Xi’an Jiaotong University.

Catalyst-Free α-trans-Selective Hydroboration and (E)-Selective Deuterated Semihydrogenation of Alkynyl Sulfones (@JOC_OL): https://pubs.acs.org/doi/10.1021/acs.joc.3c02833.

Photonic implementation of the quantum Morra game, Andrés Ulibarrena, Alejandro Sopena, Russell Brooks, Daniel Centeno, Joseph Ho, Germán Sierra, and Alessandro Fedrizzi #Quantum #QuantumInformation https://go.aps.org/45eWCru

We’re excited to share our latest preprint on @ChemRxiv! The talented @Zhipengluu developed a new photo-active hypervalent iodine reagent for the diversification of aliphatic C–H bonds. Check it out: https://chemrxiv.org/engage/chemrxiv/article-details/665755b321291e5d1d8dfdbf

Now in @InorgChem! Read the article featuring pyrazine (pz)-bridged dinuclear Ru2(II,II) and Ru2(III,III) complexes and pz-containing mononuclear Ru(II) and Ru(III) complexes, which were afforded through the reactions of the (μ-Cl)3 Ru(II,II) complex: https://go.acs.org/9Gq

Long-Range Gating in Single-Molecule One-Dimensional Topological Insulators | Journal of the American Chemical Society @ColumbiaScience @Columbia @ChemColumbia @APAMMSECU #Gating #Topological #Insulators

Diastereo- and Enantioselective Construction of Stereochemical Arrays Exploiting Non-Classical Hydrogen Bonding in Enolborates (@ChemEurJ): https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202401485.

A Review on the Recent Advances in Developing Radical Methods for the Synthesis of Aliphatic Sulfonyl Fluorides by Zhong-Yan Cao, Saihu Liao, and co-workers

Load More

Get the latest University of Science, Technology and Arts news

Select the fields to be shown. Others will be hidden. Drag and drop to rearrange the order.
  • Image
  • SKU
  • Rating
  • Price
  • Stock
  • Availability
  • Add to cart
  • Description
  • Content
  • Weight
  • Dimensions
  • Additional information
Click outside to hide the comparison bar
Compare